Skip to main content Skip to navigation
Hydrogen Properties for Energy Research (HYPER) Laboratory Cool. Fuel.

Start your cryogenics career with a Boom!

 

People often ask both why and how I ended up focusing my career on a niche area like cryogenic hydrogen. To be honest, I had no idea that cryogenics was even a field of research, like the vast majority of engineering and physics students graduating from our universities. I started down this path by accident when my Master’s Thesis Advisors at the University of Idaho, Dr. Richard Jacobsen and Dr. Steve Penoncello, gave me the option in the Fall of 2005 to either write new equations of state for hydrogen or natural gas distribution. I chose hydrogen, because of rockets, like most young engineers … » More …

The power of story

The room was packed with the who’s-who — and somehow I’m in the panel on stage. The mic was passed to me. Not knowing how to begin, I just told my story. Not far along I started receiving smiles, nods, and laughter from the audience. From that point on I knew I had an audience that could relate to my story.

(Here’s a secret for those of you that don’t know me — I’ve never been great at telling stories.)

It’s amazing how effective a story is at communicating — despite the fact that everyone’s story is different. There is something inherent about a personal … » More …

The magic of magnetizing air

One of the HYPER lab’s favorite demonstrations for visitors is magnetizing air — yes, the stuff you’re breathing can be magnetized. We play around before these demos and come up with amazing ideas, and we’ve got patent-pending technology to prove it.

Here’s what you’ll need to do this:

Support a small metal container over a surface. In the picture above we’re using a thin-walled stainless steel beaker and a test-tube stand.
Fill the metal container with liquid nitrogen (make sure you’re following all necessary safety precautions before handling liquid nitrogen).
Because the normal boiling point temperature of liquid nitrogen (~77 K) is … » More …

Welcome Cougs to becoming professionals

Yesterday I stood in the center of the Round in the Spark as one of four faculty to address 270 of our incoming freshman engineers.

I’ve thought about this moment for years — going way back to my time as an undergrad. What would I tell a freshman on their first day as an engineer? What was I told on my first day?

Flashback – briefly – my first day on campus as an undergrad was the start of football camp. The first night of which drunken seniors rounded up the freshman and shaved all of our heads — some better than others. — I’ve … » More …

The Sounds of Hydrogen

Hydrogen is the simplest atom or molecule; comprising 75% of the known mass of the universe. No atom or molecule has a more fundamental role. So to compliment our post on the Colors of Hydrogen we asked ourselves, what does hydrogen sound like? More specifically, can we develop a fundamental scale of hydrogen tones? And if we’re lucky, this scale will give us a new feel for the complex physical interactions of hydrogen in the universe.

Traditional musical scales are built on ratios. For example, an octave between notes has a ratio of 2:1 for the frequency. At 440 Hz, the pitch produced is … » More …

You don’t know Jack.

Many seem to think my student mentoring style is non-traditional. At least the students tell me it’s different from other faculty. It’s because you don’t know Jack. My dad Jack. Mentor numero uno. My original mentor. Get to know Jack and you’ll start to understand.

Somehow, and I still don’t have this figured out, my dad has reliably produced outstanding teachers and mentors in his wake. His little sister Laurie spent her career as a 5th grade teacher in one of Lewiston’s tougher areas. His little brother Tom is the head science teacher at Lewiston … » More …

Despite the statistical ‘evidence’

In high-school I was too light (250 pounds), too week (280 pound bench), too slow (5.5 s 40 yard time) to be a ‘good’ offensive line football player — but somehow managed to lead a team to the 5A state title game, set school rushing records, and land a D1 college scholarship to play for Tom Cable, an offensive-line guru.

In college my SAT scores were too low (1240/1600), GPA too low (3.26/4), GRE scores too low (720/800 quantitative), qualifier scores too low, to be a ‘good’ researcher in mechanical engineering — but somehow managed to win the Outstanding Senior Award in ME at Idaho … » More …

Never _____ what a student should

1. Never teach what a student should — stop holding office hours, hold group study instead; stop pontificating, assign them a forum post/essay instead; stop answering, start questioning.

2. Never present what a student should — stop lead authoring, they need to learn to write; stop presenting at conferences, they need to learn to talk; stop pitching to businesses, they need to reel ’em in.

3. Never design what a student should — stop estimating, they need to learn the “back of the envelope”; stop questioning clients, they need to know when to speak up; stop calling suppliers, they need to know who to talk … » More …

Authority, feedback loops, and the setback

One of the characteristics of the HYPER lab community and alumni is authority and ownership over projects. I work very hard to fulfill the role of coach, a.k.a. service leadership, and to not take ownership of experiments away from the people actually doing the work. This is a fine balance and requires lab wide standards to ensure safety and performance. This scaffolding is a key reason great students keep coming to the lab — freedom to own a difficult project with the necessary coaching and resources to succeed. This is very different from authoritarian micro-managing environments typical of business and academia in the US. … » More …

Common Cryogenic Copper Confusions

I made these mistakes when I was learning. Just about every student in my lab has made them too. It’s all too common to have cryogenic copper confusion. It ends here.

The root of the confusion lies in the heat transfer promised land, as illustrated by the below chart of thermal conductivity of copper at cryogenic temperatures. An even better comparison than this chart is in Jack Ekin’s FANTASTIC book that is absolutely required reading for my lab: “Experimental Techniques for Low Temperature Measurement” Jack is so wonderful he’s even posted the figures openly available for people to access on-line and his thermal conductivity … » More …