Skip to main content Skip to navigation
Hydrogen Properties for Energy Research (HYPER) Laboratory Dr. Jacob Leachman

Jacob Leachman

My Story


Jake Leachman with the Cryocatalysis Hydrogen Experiment Facility (CHEF) in 2017.


My background is like most WSU students. I grew up in Lewiston Idaho, which is about 45 minutes from Pullman. My father is a brilliant mechanic and my mother was a small business and housing consultant. Suffice it to say, we really didn’t get out much. When it came time to apply for college I had decent grades, knew I had a knack for coaching and mechanical design, and had a gift for playing football. My football skills attracted attention from Ivy League schools and eventually won a full ride scholarship to the University of Idaho.

The U of I Mechanical Engineering program is a hidden treasure, was ranked among the top 8 Capstone programs by the National Academies, and had produced incredible engineers like Tom Mueller of SpaceX. I ended my football career after my second year with a cracked vertebrae in my lower back. Not all was a loss with football, I took the team skills to my engineering groups and helped lead the Engineering Hall to 3 consecutive hall of the year awards in addition to the Formula SAE racecar team. These wins along with several of my design projects led to sharing the award for Most Outstanding Senior in the department and to be the Master of Ceremonies for the Engineering College Commencement.

I had an opportunity to leave Idaho for a Master’s degree at Purdue but decided to stay and work with Richard Jacobsen, the former dean, on hydrogen properties. Jacobsen’s best student, Eric Lemmon is the current world leader in Equation of State Development at NIST and helped considerably with my thesis. In the end, the decision to stay at Idaho worked out, the equations I developed became the new property models for hydrogen recommended by NIST and the backbone of the SAE J2601 hydrogen refueling standard. I also won the 2007 Western Association of Graduate Schools Distinguished Thesis Award. I finally discovered the problem that would become my passion: engineering the ortho-parahydrogen forms of the hydrogen molecule.

Through a streak of incredible luck my friend Dave connected me with the Cryogenics Laboratory at the University of Wisconsin-Madison. The Cryogenics Lab had just begun a project to conduct rheology studies of solidifed hydrogen, deuterium, and neon. Although I was in the cryogenics lab with John Pfotenhauer and Greg Nellis as my advisors, we regularly met with Sandy Klein and Franklin Miller in the Solar Energy Laboratory. Madison is incredible and my 3 years there were far too few.

I certainly was not ready for a tenure-track faculty position when I left. Cal Tech struck first and flew me out for a faculty interview. Talk about diving in head first! My room in the Athenaeum was 2 down the hall from Einstein’s. Needless to say, the nerves had calmed for my interview at WSU the following week. WSU’s start up offer was excellent and made the decision to come back home easy.

Here we are now in the HYdrogen Properties for Energy Research (HYPER) laboratory at WSU. We’ve had some big wins: 2021 NASA Big Ideas Challenge Winners, 2014 Hydrogen Student Design winners, 2012 Hydrogen Student Design runner ups, the Genii UAS, WSU TEDx, three top US Cryogenics Graduate Students, three NSTGRO winners, $$MM in federal and industry supported research, and much more to come. We have exceptional students in the group and have accomplished excellent research.

Below you’ll find links about me and some of my philosophies developed as blog posts over the years and aggregated together in what could (or have) become books. The topics and links are by no means encompassing of the content on this site. Please use the search icon to the left to find what we’ve said about a topic of interest to you.

Table of Contents

Bio, Philosophies, and Professional Practices

You’ll find that I’m passionate about the success and happiness of everyone around me. This section is intended to give you my technical bio, core philosophies and professional practices that allow me to sustain this passion.

Bio — Jacob Leachman is an Associate Professor in the School of Mechanical and Materials Engineering at Washington State University (WSU). He initiated the Hydrogen Properties for Energy Research (HYPER) laboratory at WSU in 2010 with the intent to advance the Technology Readiness Level (TRL) of cryogenic hydrogen systems. He earned a B.S. degree in Mechanical Engineering in 2005 and a M.S. degree in 2007 from the University of Idaho. His master’s thesis has been adopted as the foundation for hydrogen fueling standards and custody exchange, in addition to winning the Western Association of Graduate Schools Distinguished Thesis Award for 2008. He completed his Ph.D. in the Cryogenic Engineering Laboratory at the University of Wisconsin-Madison in 2010 under the advice of John Pfotenhauer and Greg Nellis. He is the lead author of the reference text “Thermodynamic Properties of Cryogenic Fluids: 2nd Edition”. In 2018 he received the Roger W. Boom Award from the Cryogenics Society of America. He is a Senior Fellow of the National Academy of Inventors.

Pronouns — Pronouns were invented simply to describe but subsequently used to divide, exclude, and diminish. Pronouns are polarizing and result in an unnecessary dichotomy. The only truly polarized things in nature are quantum systems. Polarizing things that are not quantum systems is oversimplification, restricts future freedoms, and holds us all back. If, and only when necessary due to tradition, I use the pronouns he, his, him.

Philosophies — While I have many philosophies I apply in different situations (use the search icon to the left if you are interested in a particular term), my core philosophies are apolitical out of principle and closely follow thermodynamic (Universal) law. This link shows how I generalize thermodynamic law into guiding principles for making daily decisions.

Creating thriving communities of professional practice has always been my mission. Designing the best structures and creating the necessary chemistry for these communities to thrive is a fun challenge. Check out our lab Compendium to see how we are currently structured.

If you are not finding what you’re looking for, don’t hesitate to reach out: jacob.leachman<at>


Cool Fuel: The Science and Engineering of Cryogenic Hydrogen

Coming in 2024! Stay tuned!

The first textbook on cryogenic hydrogen in over three decades. Co-authored with Konstantin Matveev and Oivind Wilhelmson.

Thermodynamic Properties of Fluids 2nd Edition

Proud to announce publication of my first book: Thermodynamic Properties of Cryogenic Fluids 2nd Edition. A book of this complexity is only possible with wonderful co-authors. A big THANKS to Richard Jacobsen, Eric Lemmon, and Steve Penoncello!

Empathy Entropy

This one is most definitely a work in progress boardering on personal hobby.

Formative content:

1. A Belated Introduction

Social Dynamics Framework:

2. Of Values and Energies — The 1st Law of Humanity

3. Empathy Scaffolding and the 2nd Law of Humanity

4. The Equation for When We and Society Change

Social Information Efficiencies

How non-equilibrium transport leads to social structures

Social Dynamics Applications:

5. The First and Last Questions of Humanity

Sophistication versus evolution

6. Education and Personal Development

Bouncy house physics

Rethinking Education

The future of Universities is…

Mentoring and the Sage at the Top of the Mountain

7. Creativity, Art, and Sport

The Mathematics of Creativity

Creative. Art. Work.

The Phase change that led to Kind of Blue

The future of personal fitness routines

Using design theory to explain the future of football

8. Crowds and Disasters

The size of the party next door

Marches, riots, and stampedes

The Bubonic plague and Renaissance 

9. Love and Relationships

The Chapter of Love

The Solution of Friendships

(Trivia: how to build a winning team)

10. The anti-empathic and empathy disordered

The Collapse of anti-empathy movements

Hate and Terrorism

My Friend, the psychopathic con

Good cop, Bad cop

That look in your eyes — knowing when you’re in over your head

Empathy for autism spectrum disorders

11. Changing organizations, business and politics

(Lean and organizational change)

Temperature and wealth inequality

Let’s get Political

12. The Beginning of the End

Appendix (The Math)

(the generalized Social Surface of State)

More Social Thermodynamics:


Cool Hydrogen Technology — People and Practices of the HYPER lab

A recently posited definition of intelligence is the “maximization of future freedoms.” If we accept and apply this definition, humanity needs to develop technologies that efficiently move energy, information, goods and services between grids and systems to maximize the diversity of end uses. Hydrogen has long been identified as a promising energy carrier due to utility for bulk chemical synthesis, fuel, agricultural fertilizer production, and backup power systems and storage. Hydrogen can be produced from a wide variety of sources, primarily natural gas and water, and end use technologies emit only water vapor. Over the past decade, effective market transformation approaches from the Department of Energy have led hydrogen to be the power system of choice in food and product distribution systems, in addition to backup power for cellular towers and rail systems. As micro-hydrogen economies continue to expand, amid recent news that every major automotive manufacturer are offering hydrogen fuel-cell vehicles for sale, the dawn of a wide-spread hydrogen economy is upon us.

We are currently the only academic research lab in the US with an emphasis on cryogenic hydrogen. This niche has allowed us to pioneer approaches utilizing inherent quantum mechanical properties of hydrogen that emerge at cryogenic temperatures. Specifics include the Heisenberg Vortex, our H2-Flo Cryogenic Thermal Compression Hydrogen Refueling Station, the world’s first 3D printed liquid hydrogen fuel tank utilizing endothermic para-orthohydrogen conversion, cryogenic thermodynamic property modeling and measurements, and the best is yet to come! These scientific advances are culminating in technologies advantageous to sectors of Space Exploration, National Defense, Transportation, and Clean Energy. It’s time we tell this story. That’s why I started the open source textbook for the lab that aggregates this material here:

Here are important excerpts:

Hydrogen in the Pacific Northwest:

Hydrogen Fueled Vehicles:

Hydrogen Safety:

Hydrogen Properties:


Designing-Building-Testing New Engineers

We’re in the middle of a dramatic phase-change in engineering education — and higher education in general. With this change is a corresponding change of resources. No longer can we, as instructors, a society, and nation, afford to produce engineers incapable of leading us into an increasingly uncertain future. We need to be employing the Lean Manufacturing philosophy of “failing-forward” as quickly as possible until we reach this new paradigm of education, In short, we need to be Designing-Building-Testing New Engineers.

The following sections outline how the values of an engineering degree are fundamentally changing with students. This necessitates new approaches to training and professionalism. I then show how we are working to implement these changes here in the HYPER lab website.

Educational Value Taxonomies:

Professionalism in Engineering:

Case Studies and Examples:


Jacob Leachman’s Posts